An Efficient Implementation of Huffman Decode Tables

D. R. McIntyre and F. G. Wolff
Cleveland State University & Case western Reserve University

1. Introduction

Suppose a source string (file), S, consists of a set of
distinct characters = = (a 1, A2, ey } of equal length
Mog, N1 where N is the unlverse of possigle characters. If
for 1 < i £ n, wj is the nonnegative frequency of character
aj in string S then the well-known algorithm of Huffman [1]
can be used to construct a binary tree with n 1leaves
(external nodes) corresponding to the distinct characters in
the file, and n-1 internal nodes. Huffman's tree minimizes
Witly + W *12 + ... + wp*l, where 1l; is the level at which
aj occurs in the tree.

Corresponding to each Huffman tree on X can be
associated n binary codes (strings of 0's and 1's) that form
a prefix code. A coding of £ is a prefix code if no code of
a character in T is the prefix of any other code of a
character in £. The correspondence between Huffman trees and
codes is achieved by representing the path from a root to
each leaf as a string of 0O's and 1's, where 0 corresponds to
a left branch and 1 to a right branch. We see from this that
Huffman's algorithm produces a prefix code such that the
resulting sequence of 0's and 1's in the encoding of string S
has minimum length.

It is clear from the above discussion that the Huffman
encoding (and hence the decoding) is very much a function of
the source string S being compressed, and hence some
representation of the decode table must be included along
with the encoded (compressed) string S.

Decode Table (DT) Encoded String S
(representation of codes) (compressed string S)

The decode table must consist of some representation of the
codes followed by a list of the characters being encoded.
However, since the codes are a repetition of the branches in
the Huffman tree, typically the decode table (DT) is more
efficiently stored as some representation of the shape of the
Huffman tree followed by a 1list of the characters being
encoded (the Huffman tree leaf labeling) as follows:

Huffman Decode Table (DT)

Huffman Tree Shape (TS) Leaf Labeling (LL)

In this paper we present an extremely efficient storage
implementation of the Huffman tree shape (TS) part of the
decode table which is useful for efficient disk storage of

CONGRESSUS NUMERANTIUM 91(1992), pp.79-92



compressed files. An outline of the paper is as follows. 1In
Section 2 we introduce some historical techniques for storing
the Huffman tree shape as a precursor to better understanding
our implementation. Section 3 presents our Base 1 method for
storing the Huffman tree shape. Oour latest method called
Base 2 for storing the Huffman trees shape is given in
section 4. Finally in Section 5 the results of experimental
runs given comparing the various methods discussed are given.

2. Historical Tree Bhape Storage Implementations
2.1 Introduction

To begin with we review the Huffman algorithm [1] for
constructing the Huffman encode/decode tree for string S
containing distinct characters I = (a;, aj,..., ap).

0) Scan string S to determine the frequencies, wj, of each
character a; in Z.

1) Sort T by frequency and initially let each character a;
be represented by a one node tree with frequency wj.
(0(n log n) time complexity)

2) Generate the Huffman tree (O(n) time complexity)
do n-1 times

i) Replace two trees of smallest frequency with a
new tree
a) containing a root node with the two smallest
trees as subtrees, and
b) with frequency the sum of the frequencies
of its two subtrees
ii) Insert the new tree (logically) into the
sorted list of trees
enddo

3) Generate the character codes. (0(n) time complexity))
Arbitrarily assign 0's to the left links and 1's to the
right links of the Huffman tree. Then scan the Huffman
tree in NLR order to obtain the prefix codes.

4) Store (O(n) time complexity)

a) the Huffman tree shape, TS, followed by
b) the leaf labeling, LL, followed by
c) the encoding of S

For our examples in this section and the two subsequent
sections we shall use a source string S containing 25
characters (S was an actual FORTRAN source code file).

2.2 standard Huffman Implementation

Until recently, most PC archive software stored the
Huffman tree shape using an array of records, each record
consisting of a LEFT CHILD and RIGHT CHILD fields. Initially
the array consists of n elements containing zeros in the left
and right child fields corresponding to forest of n trees
consisting of single leaf nodes. Then as trees (the two

80



smallest) are combined an additional root node is added to
the array at the next available spot with left and right
indexes to the roots of the 1left and right subtrees
respectively. We show part of the array generated for the
test string S. The array will clearly contain n + (n-1) =
2n-1 elements where the last element added will be the root
of the Huffman tree. It should be clear that it is
unnecessary to store the first n elements of the array
representing leaf nodes (which only contain zeros) as long as
the leaf 1labelings, corresponding to those array elements,
are listed in the same order as the first n elements of the
array. It should also be clear that the value of n, 25, ih
this case, must precede the n-1 = 24 array elements storing
the tree shape in order to know where the part of the decode
table containing the tree shape ends and the leaf labeling
begins. Figure 2.2.1 illustrates the example.

For the general case, this method of storing the tree
shape requires flog,N1 to store n plus 2(n-1)(flog,N1+1) to
store the tree.

49 a) 0o 0
@ n a 0 o0
0 1 leaves . | . .
ﬂz‘ o 0
agg 0 “ 1 azg | 0 O
® & a2 |s i
0 1 0 - 1 ﬂza 26 S
42 _ 43 a“ a2 1% 8
0 1 0 1 o - i 0 4ﬁ asy 9 10
37 . .
e 0o K3 R0 W Qa1 NP
0 1az3 223 a24 1 interior | . .
D31 Q32 033 434 O35 > 36 nodes : :
818 319 a0 0/\ ap 1 a4 |42 43
(28 29¢) (330 ::z 46 47
ag ayg aqy 842 aq3 a14 a1s aig aq7 agg |25 48
26 ) 27¢)
ag ag az ag
a; ap ag a4

Figure 2.2.1 Huffman Tree and Decode Table.

81



2.3 8chwartz and Kallick Implementation:

Schwartz and Kallick in their paper (2] introduce the
concept of a canonical tree which leads to a significant
reduction in the tree shape storage.

Definition: A Huffman tree is in canonical form if the leaves
at each level are left of all internal nodes at
that level.

It is easy to convert any Huffman tree, H, into canonical
form.

procedure canonicalize (H)
for each level beginning with level 1 do
while there exists a leaf right of an internal node do
interchange the leaf with the tree rooted at
the leftmost internal node at that level
endwhile
return (H)
endfor
endproc

The following Figure 2.3.1 illustrates the algorithm for a
small Huffman tree.

= =

Huffman Tree Canonical Tree

Figure 2.3.1 Converting a Huffman Tree to Canonical Form.

Lemma If H is a Huffman tree for string S and C is the
corresponding canonical tree for H then the prefix code
produced for C also minimizes the encoding for S.

Proof: Obvious since the level of each leaf in the canonical
tree is the same as its level in the Huffman tree. -

.

Schwartz and Kallick discovered that if the Huffman tree is
first converted to its canonical form, then the amount of
decode table storage required to store the much simpler tree
shape was significantly reduced. The scheme stores the tree
shape in a list, TS, of length k where k is the number of
levels in the canonical tree - 1 (not including the root
level). The ith element in list TS contains the number of

82



leaves at level i. All elements in TS are a fixed number of
bits in size. For example Figure 2.3.2 gives the canonical
tree, tree shape and leaf labeling.

Level =~ Number of
(Length) | Leaves 1

1 1

o N O s W N
& b O W O O

8 ay
3 or-rg=88 88 588E2 ¢ &
s §§9=:§869_ ------------------ Tr TEEEEZ.C
8cR8222C-CCF =T FETEECE
Tree Shape Leaf Labeling

1 0 0 3 4 9 4 4|a25a22a23a24a18al19a20

a21 ag-a17 a5-a8 al-a4 | ...encoded string...

Pigure 2.3.2 The Schwartz & Kallick Canonical Tree, Decode
Table and Numerical Sequence Code.

83



However, the question arises as to how the decoder
determines the end of the tree shape section TS without
initially storing either k, the number of levels - 1, or n,
the number of leaves, It turns out that this is not
necessary as the number of nodes in the tree (and hence the
end of the tree shape) can be deduced. The basis of this
lies in the following observations.

Lemma In any canonical tree if the number of internal nodes
at level k is Iy then the total (leaves plus internal)
number of nodes at level k+1 is 2Iy.

Proof: Obvious since in a canonical tree each internal node
has exactly 2 child nodes. -

This fact along with the fact that the number of internal
nodes at any level is the total number of nodes at that level
minus the number of leaves at that level, allows the decoder
to be able to reconstruct the shape of the canonical tree
from the stored tree shape and also deduce the end of the
stored tree shape section within the decode table. Let 1;

(the number of leaves at level i) for 1 £ i £ k be the
elements of the list TS stored for the tree shape. Then the
decoder can scan the k elements of TS and determine the
structure of the canonical tree as follows.

Construct root node at level 0.

Construct 2 child nodes to the root at level 1.

i =1 /* i keeps track of the tree level */
L; := list of nodes from left to right at level i.
while number of nodes at level i = |Lj| > 0 do

1. The first 1; nodes of Lj are leaf nodes.

2. The remainlng jni| - nodes of L; are internal
nodes and for each internal node construct two
child nodes and place them in Lj4;.

3. i :=41+1

endwhile

The decoder can now continue to scan the remaining part of
the decode table containing the n (the decoder has determined
the number of leaves, n, from the tree generation) leaf
labeling character codes and associate the 1leaves of the
canonical tree, level by level from the top of the tree to
the bottom level of the tree and left to right within each
level, with the leaf labeling character codes in the order
they are encountered in the decode table.

In addition, Schwartz and — Kallick discovered an
interesting numerical sequence property for the codes of
leaves in a canonical tree which makes the process of
generating at encode time the codes for the characters
L = (a re++ 43p) even easier. It takes advantage of the
fact téat %he explicit structure of the canonical tree is not
required but only the number of bits (i.e. level) in the code
for each leaf and left to right order within level of each of

84



the character codes of the leaves in the tree (this is the
leaf labeling list (LL)). This is exactly what Schwartz and
Kallick store in the decode table (DT), namely TS followed by
LL. The following procedure is used by the encoder to
generate the codes C = ¢y, C3,..., Cp corresponding to the
elements in LL using TS = 13, 1lj,..., 1y where 1; is the
number of leaves at level i in the cannonical tree.

procedure code_generation (DT, C):
/* DT is the decode table and consists of the tree */
/* shape section, TS, followed by the leaf labeling */
/* section LL which is some permutation of *

/* £ = (a;, az,..., an}. */
/* TS =13, 1l3,... 1k where 1; is the number of */
/* leaves at §eve1 i in the canonical tree */
/* This procedure uses DT to directly generate C. %/
/* C=cq, C3,.., Cy Where cy is the code of ith leaf */
7% in the leaf labeling list (LL) */
begin
i=1; /* 1 is the level of the canonical tree */
Ty:i= 2; /* Ty is the total number of nodes at level i */
k := 0; /* cp is the code of the kth leaf label in LL */

bit_code := 0 bit
wvhile number of nodes, T;, at level i not 0 do
1. for j :=1 to ii do
k =k + 1;
cx := bit_code;
bit_code := bit_code + 1; /* binary add */
endfor
bit_code := bit code with 0 bit appended on right
2, Tj4y = (Tq = 143) * 2;
3. i7:= 1 + 13
endwhile
end
endproc

Figure 2.3.2 illustrates the use of the numerical sequence
property to generate codes.

In general the storage required for the tree shape in a
tree with n 1leaves, k 1levels, and universal set of N
characters is kflog,N1 bits. Typically, (on average) k is of
order log, N so this represents better than half saving over
the standard Huffman trees storage implementation.

3. Base 1 Implementation

The motivation for our first improvement in tree shape
storage was to avoid the rather large fixed length fields of
size MNogyN1 bits to store the number of leaves at each level
of the canonical tree. The scheme to generate the
encode/decode trees works as follows. Use a 0 bit to
represent each leaf node and a 1 bit to represent each single
downward level change. Then beginning with level 1 in the
canonical tree (again trees with level 0 which consist of a
single leaf, the root, are not practically interesting), if

85



there are any leaves at this level store a 0 for each
occurrence. Then store a 1 to indicate a single downward
level change. Continue this process at each subsequent
level. The bottom level will store a 0 bit for each leaf
occurrence (all nodes at this level will be leaves) however,
no 1 bit will be stored since there is no subsequent lower
level. Figure 3.1 illustrates the situation for our example
' string S. The base 1 decode table (DT) can be generated
directly from the initial (noncanonical) Huffman tree, H, by
the encoder without explicitly generating the canonical tree-
as follows.

procedure Decode_Table_Generation_1 (K,DT)

/* H is the initial Huffman tree with k levels. */
/* DT is the decode table consisting of TS followed *#*/
/* by LL. */
/* TS is the Tree Shape bit string, and */
/* LL is the leaf labeling character codes. */
/* This procedure generates DT from H. */
begin

/* perform a breadth first search of H */

TS = []:

LL := []:

for i := 1 to k /* number of levels in H */ do

if there are 1; leaves at level i then

TS := TS with 1 0's appended to the right;

LL := LL with the character codes of the 1;
leaves in the left to right order within
the tree at 1level i appended to the
right;

endif
if i <> k then
TS := TS with 1 appended to the right;
endif
endfor
DT = TS with LL appended to the right
aend
endproc

The reason for the name "base 1" is simply because the number
of leaves at each level is represented as a base 1 string of
0's. Also, base 1 strings of 1's are used to represent
changes in level.

The following procedure is used by the decoder to scan
the decode table (DT) and regenerate the canonical Huffman
encode/decode tree, H, with labeled leaves. The decode table
(DT) is a bit string which contains both the Huffman tree
shape (TS) and the fixed length leaf labeling (LL) codes, a
permutation of character codes a;, a,, ..., ap. The
procedure used is similar to the procedure used in Section
2.3 except that it deduces the number of leaves at each level
by counting the number of 0's in contiguous strings of 0's in
TS. We assume that each node of the decode tree generated
contains (at least) the pointer fields (denoted by °) left
and right which point to the 1left child and right child
respectively.

86



précedure Decode_Tree_Generation_1 (DT, H):
begin
/* This section scans the first part of the decode table #*/
/* (DT) containing the Huffman tree shape (TS) and from #*/

/* it reconstructs the shape of the Huffman tree H. */
iz= /* i is the level of the canonical tree %/
Allocate storage for nodes n and n,.

t= 3 /* number og nodes allocated */

left ( ng ) = "nmy

right( ng ) = "ny

H := no /* H points to the root of the decode tree */

L; := ["ny, "ny] /* Lj is a list of pointers to nodes in */
/* left to right order on the ith level #%/

/* of the Huffman decode tree being */

/* reconstructed. */

LEAVES := [] /* LEAVES will contain a list of pointer to */
/* leaves in the decode tree stored in */

/* such a way that leaves left of other */

/* leaves in the tree appear before other */

elements in the list LEAVES. */

while number of nodes at level i = |Lj| > 0 do

1. set Lj,; = the empty list []

2. Scan } consecutive 0 bits (but no more than L )
beglnnlng with the next bit in the Huffman tree
shape (TS). Also if less than |Lj| zero bits
were scanned then the subsequent 1 bit is
scanned (1; could have value 0 if the next scan
bit is 1).

3. Scan the first 1; elements of Lj copying the

pointers to these nodes to the end of list LEAVES.

4. Scan the remaining |Lj| - 1j elements of Lj :

for j =1 +1 to |L f
Allocate storage for nodes ny and Ng4q
left ( jth element of L; ) := nk

a

right( jth element of Li ) Npt1
Add “ny and “np,; to the end of Lj,,

k : =k + 2
endfor’
5. 1 := 1+ 1;
endwhile
/* This section continues the scan of the DT which */
/* contains the fixed length leaf labelling (LL) codes #*/
/* and associates each element of LL with the */

/* corresponding element in list LEAVES respectively. */

for i := 1 to n do
Associate label tree leaf pointed to by ith element of
LEAVES with ith element of LL.
endfor
end
endproc

The following summarizes the storage costs of storing
the tree structure using the base 1 method.

87



Lemma 3.1 If a canonical tree has ﬁ leaves and k levels then
the size of the tree structure (TS above) is
n + kK - 1 bits.

' Proof: There is a 0 bit for each leaf and there are n leaves.

Also there is a 1 bit for each level below level 1,
and since there are k levels there are k-1 1 bits. =«

Levell Tree Shape

0001
00001
0000000001
00001

0000

210

o N O b WON

8 8

Tree Shape (32 bits) Leaf Labeling

01110001000010000000001000010000 | a25 a22-a24

a18-a21 a9-a17 ab5-a8 al-a4 | ...encoded string...

rigure 3.1 Base 1 Canonical Tree and Decode Table

4. Base 2 Implementation

The use of base 1 strings consisting of r 0's to
represent r leaves at some level in the base 1 tree shape
storage method is somewhat wasteful of storage. Hence our
attention was directed to searching for a base 2 way of
encoding the number of leaves at each level. The idea was
that if the canonical tree had k levels then we would store k
base 2 binary numbers 13, 1 S i < k where 1; represents the
number of leaves at level 1i. This lead to the problem of
determining what size field should be used. If a fixed field
size is used then the storage method used in Section 2.3 is
the result with a large field size of llog,N1 bits (to handle
the worst case).

88



The solution is to use variable size fields but in such
a way that the decoder at decode time could determine the
variable field sizes that were used by the encoder. The
solution can be seen by a careful examination of the
algorithms Decode_Table_Generation_1 and
Decode_Tree_Generation_l in Section 3. 1In these algorithms
both the encoder and’ decoder know the total number of nodes,
T; say, at the next level, i, of the canonical tree (|L;| in
t&e algorithms). Thus at level i in the canonical tree, if
T; is the total number of nodes at this level then 1;, the
number of leaves, is stored base 2 using Mlog, T;1 bits.

This, however, leads to a further problem. At any given
level, i say, containing T4 nodes it is possible for level i
to contain 1; leaves where 0 < 13 S T;. If Tj = 2¥ for some
integer r then flog, Tj1 = r bits wiI& not suffice to store
the T;+#1 = 2T+1 values that 1; can assume. The solution to
this situation is to let a string of r 1's represent two
possibilities. These two cases are resolved by examining the
next (r+l1 st) bit: r 1's followed by a 1 will denote 1§ = T;
= 2¥ leaves, whereas r 1's followed by a 0 will denote 1y =
Ty - 1= 2T-1 leaves. Figure 4.1 illustrates the method.

The base 2 method to generate the decode table (DT) is
similar to the base 1 method and again can be generated
directly from the initial (noncanonical) Huffman tree, H, by
the encoder without explicitly generating the canonical tree
as follows.

procedure Decode_Table_Generation_2 (H,DT)

/* H is the initial Huffman tree with k levels. */
/* DT is the decode table consisting of TS followed #/
/* by LL. */
/* TS is the Tree Shape bit string, and */
/* LL is the leaf labeling character codes. */
/* This procedure generates DT from H. */
begin
4; pefgorm a breadth first search of H */
= []):
LL := [];

.
for i := 1 to k /* number of levels in H */ do
if 1; leaves at level i then

TS := TS with base 2 encoding of 1j appended to
the right;

LL := LL with the character codes of the 14
leaves in the left to right order within
the tree at level 1 appended to the

right;
endif
endfor
gm = TS with LL appended to the right
en
endproc

89



The following procedure is used by the decoder to scan
the decode table (DT) and regenerate the canonical Huffman
encode/decode tree, H, with labeled leaves. The decode table
(DT) is a bit string which contains both the Huffman tree
shape (TS) and the fixed length leaf labeling (LL) codes, a
permutation of character codes a;, ajp, ceey ap. The
procedure is similar to the base 1 procedure used in Section
3 except that it deduces the number of leaves at each level
by decoding the base 2 value of the number of leaves in TS.
Again we assume that each node of the decode tree generated
contains (at least) the pointer fields left and right which
point to the left child and right child respectively.

procedure Decode_Tree_Generation_2 (DT,H):
begin
/* This section scans the first part of the decode table #*/
/* (DT) containing the Huffman tree shape (TS) and from */

/* it reconstructs the Huffman tree shape. */
i:= /* i is the level of the canonical tree */
Allocate storage for nodes ng, ny and n,.

:= 3 /* number og nodes allocated */

left ( ng ) : ny

right( ng ) := “ny

H := "ng /* H points to the root of the decode tree */

Lj := {"n;, “ny)] /* Lj is a list of pointers to nodes in %/
/* left to right order on the ith level #*/

/* of the Huffman decode tree being */

/* reconstructed. %/

LEAVES := [] /* LEAVES will contain a list of pointer to %/
/* leaves in the decode tree stored in */

/* such a way that leaves left of other %/

/* leaves in the tree appear before other */

/* elements in the list LEAVES. %/

while number of nodes at level i = |Lj| > 0 do
1. Set Lj,; = the empty list []

2. 1; := value of next l6g |L1| bits of TS (if all
the bits are 1's gen if the next bit is. 0
the value is |Lj|- 1 otherwise the value is

lLg )

3. Scan the first 1; elements of Lj copying the
pointers to these nodes to the end of list LEAVES.

4. Scan the remaining |Lj| - 1§ elements of L; :
for j = 14 + 1 to |Lj f
Allocate storage for nodes ny and ny.j
left ( jth element of L; ) := "k
rlght( jth element of Ly ) := "ny
Add “ny and "nkg4y to the end of L1+1
k := k +
endfor
5. 1i:=1i+ 1;
endwhile



/* This section continues the scan of the DT which */
/* contains the fixed length leaf labelling (LL) codes */
/* and associates each element of LL with the *

/* corresponding element in list LEAVES respectively. */

for i := 1 to n do

Associate label tree leaf pointed to by ith element of
LEAVES with ith element of LL.
endfor
end
endproc

#Nodes | # leaves (code)
2110
210
4 | 00
8 | 011
10} 0100
12| 1001
100
11 1

Tree Shape (22 bitS) Leaf Labeling
1000001101001001100111 a25 a22-a24

a18-a21 a9-a17 a5-a8 ail-a4 | ...encoded string...

Piqure 4.1 Base 2 Canonical Tree and Decode Table.

91



The storage costs of storing the tree structure using
the base 2 method is harder to analyze. However
experimentally the results show a significant decrease in the
tree shape storage size of almost 50% over base 1 storage.

5. Experiments

Compression experiments were conducted using 485 files
consisting of PL/I, COBOL, FORTRAN and Pascal source programs
over the universe of N = 256 characters (i.e. 8 bit codes)
for the implementations of Huffman, Schwartz & Kallick, base
1, and base 2 discussed in this paper. For each
implementation, the number of bits to store the tree shape
divided by the number of leaves was computed per file and
then averaged over all files. The results in Figure 5.1 show
that base 2 is about twice as efficient as base 1 which in
turn is about 6 times as efficient as Schwartz & Kallick
which in turn is about twice as efficient as Huffman. The
base 2 size of the tree shape (TS) is 22.5 times smaller than
standard Huffman methods.

# bits in Tree Sshape / # leaves

Huffman 16.9
Schwarts & Kallick 7.9
Base 1 1.3
Base 2 0.75

Figure 5.1 Comparison of Number of bits to Store the Tree
Shape / Number of Leaves averaged over 485 files.

REFPERENCES

{1) D. A. Huffman, "A method for the construction of minimum
redundancy codes", Proc. IRE, 40, 9, (1952), pp. 1098-
1101. '

[2] E. S. Schwartz, and B. Kallick, "Generating a canonical
prefix encoding" Commun. ACM 7, 3 (1964), pp. 166-169.

92



